Multi-Modal Tabular Deep Learning with PyTorch Frame

Akihiro Nitta akihiro@kumo.ai ()/pyg-team/pytorch-frame

•••

pip install pytorch-frame

Table of Contents

- Challenges in Modern Tabular Learning
- PyTorch Frame Multi-modal tabular deep learning
- Single table to multiple tables

Tree-based models are dominant – with limitations

- GBDTs are focused on numerical and categorical features
 - Modern tabular data have text and images
- Integrating GBDT with deep learning models is non-trivial
 - training tabular models with image and text encoders
 - training recommendation models with GNNs end-to-end

PyTorch Frame

A modular framework for tabular learning

🖌 Multi-modal features

numerical, categorical, multi-categorical, image, text, embedding, timestamp

Modular design covering various existing models *e.g.*, Trompt, ExcelFormer, FT-Transformer

🎉 Best Paper Award at TRL@NeurIPS 2024 💽

Data Materialization

During data materialization, 🛱 PyTorch Frame:

- encodes a raw data frame into a TensorFrame
- **computes statistics**, *e.g.*, mean, standard deviation, count of category elements

TensorFrame is a tensor-based data structure

- stores columns of the same type in a tensor
- stores sparse features efficiently, e.g., via MultiNestedTensor

Data Materialization

Column Embeddings: [N, C, F]

Data Materialization and Semantic Types

PyTorch Frame materializes columns of different semantic types as follows:

- **numerical** Pass through of floating-point columns
- categorical Map categories to indices
- multicategorical Map multiple categories into indices of varying length
- timestamp Map timestamps to integers of year, month, day, hour, minute, ...
- embedding Pass through of pre-computed embeddings
- text_tokenized Tokenize text into a list of integers of varying length
- text_embedded Pre-compute text vectors via external text models
- **image_embedded** Pre-compute image vectors via external image models

Native Integration with Foundation Models

Hugging Face VOYAGE A

Data Materialization and Semantic Types

PyTorch Frame materializes columns of different semantic types as follows:

- **numerical** Pass through of floating-point columns
- categorical Map categories to indices
- multicategorical Map multiple categories into indices of varying length
- timestamp Map timestamps to integers of year, month, day, hour, minute, ...
- embedding Pass through of pre-computed embeddings
- text_tokenized Tokenize text into a list of integers of varying length
- <u>text_embedded</u> Pre-compute text vectors via external text models
- image_embedded Pre-compute image vectors via external image models

Native Integration with Foundation Models

Hugging Face VOYAGE A

Data Materialization and Text Columns

PyTorch Frame provides two ways to handle text columns:

Pre-encode text during **materialization** once to avoid computing the same embeddings

"text embedded"

- Tokenize text during **materialization** once
- Finetune embeddings in encoder

"text_tokenized"

L times Column-wise Interactions: [N, C, F]

Decoding: [N, D]

Encoder

Data Materialization and Semantic Types

PyTorch Frame materializes columns of different semantic types as follows:

- **numerical** Pass through of floating-point columns
- categorical Map categories to indices
- multicategorical Map multiple categories into indices of varying length
- timestamp Map timestamps to integers of year, month, day, hour, minute, ...
- embedding Pass through of pre-computed embeddings
- <u>text_tokenized</u> Tokenize text into a list of integers of varying length
- text_embedded Pre-compute text vectors via external text models
- image_embedded Pre-compute image vectors via external image models

Native Integration with Foundation Models

Hugging Face VOYAGE A

PyTorch Frame stores variable-length features efficiently via torch_frame.data.MultiNestedTensor

Size of dense representation:

N*max_entries*sizeof(dtype)

Size of sparse representation:

N*max_entries*sizeof(dtype)*density
+(N+1)*sizeof(int64)

Example:

- dtype is int64, N is 1,000, max_entries is 1,000, density is 10%
- dense: 8,000,000 bytes
- sparse: 8,08,008 bytes (only 10% of dense version!)

Raw Data Frame

Compressed Representation

https://pytorch-frame.readthedocs.io/en/latest/generated/ torch_frame.data.MultiNestedTensor.html

Three-stage Model Architecture

Encoding embeds each column independently

- missing data imputation
- normalization
- embedding lookup
- cyclic encoding
- positional encoding
- ...

...

Column-wise interaction performs message passing across columns.

Decoding summarizes column embeddings to obtain row embeddings.

- weighted sum of column embeddings
- MLP over the flattened column embeddings

Encoding

Decoding

Column-wise

Three-stage Model Architecture

Many models fit within three-stage framework

Model	Trompt	ExcelFormer	FT- Transformer
Encoder	Any	CatBoostEncoder	Any
Column-wise interaction	Trompt Cell	Transformer	CLS token + Transformer
Decoder	Trompt Downstream	MLP	MLP

Column-wise


```
1 class MyModel(torch.nn.Module):
   def __init__(self):
      self.encoder = StypeWiseFeatureEncoder(
        out_channels=channels,
        stype_encoder_dict={
          stype.categorical: EmbeddingEncoder(),
          stype.numerical: LinearEncoder(),
        },
      self.convs = torch.nn.ModuleList([
        TabTransformerConv(
          channels=channels,
          num_heads=num_heads,
        ) for _ in range(num_layers)
      self.decoder = torch.nn.Linear(
        out_channels,
   def forward(self, tf: TensorFrame) -> Tensor:
     x, _ = self.encoder(tf)
     for conv in self.convs:
       x = conv(x)
     return self.decoder(x.mean(dim=1))
```


Encoding

Decoding

Compatible with torch.compile & DDP!

\$ python examples/trompt.py --dataset Higgs --batch_size 512 \$ python examples/trompt.py --dataset Higgs --batch_size 512 --compile

- \$ python examples/trompt_multi_gpu.py --dataset Higgs --batch_size 512
- \$ python examples/trompt_multi_qpu.py --dataset Higgs --batch_size 512 --compile

Single Table to Multiple Tables – Relational Deep Learning

Relational Data in Real World

Relational Data Is a Graph

A node denotes a row in a table

- A user in USERS table
- A product in Sales table

An edge denotes a pkey-fkey relationship between nodes

- Users.ID 🔂 Sales.User_ID
- Products.Product_ID
 Sales.Product_ID

Nodes features are column features:

- User features: age, post code, signup date
- Product features: price, category tags, image, rating

Graph ML Tasks on Relational Data

Problem	Туре	
Age Prediction	Regression	
Prediction of Movie Ratings	Regression	
Lifetime Value	Temporal Regression	
Active Purchasing Customer LTV	Temporal Regression	
Active Purchasing Customer Churn	Temporal Binary Classification	
Fraud Detection	Temporal Binary Classification	
Next Item Category Prediction	Temporal Multiclass Classification	
Probability of Liking an Item	Non-Temporal Classification	
Item to Item Similarity	Static Link Prediction	
Top 25 Most Likely Purchases	Temporal Link Prediction	
Item Recommendation	Temporal Link Prediction	
Top 25 "High Value" Purchases	Temporal Classification/Ranking	

https://kumo.ai/docs/examples/predictive-query

Graph Neural Networks on Relational Data

GNNs aggregate information from tables to make predictions

No feature engineering
 No temporal information leakage
 via temporal sampling
 More accurate model
 via lossless graph representation

Tabular Models and GNNs

Step 1: Sample a subgraph

Step 2: Compute node embeddings for nodes in the subgraph

Step 3: Perform message passing across table with GNNs

Optimize tabular model and GNNs end-to-end for your task


```
1 class MyGNN(torch.nn.Module):
   def init (self):
     self.encoder = torch.nn.ModuleDict({
       "Users": MyTabularModel(...),
                                               Ŵ
       "Products": Trompt(...),
     })
     self.gnn = to_hetero(GraphSAGE(...))
   def forward(
     self,
     tf_dict: dict[str, TensorFrame],
     edge_index_dict: dict[str, Tensor],
    ) -> Tensor:
     x dict = {
       self.encoder[table_name][tf]
       for table_name, tf in tf_dict.items()
     return self.gnn(x_dict, edge_index_dict)
```

RelBench: A Benchmark for Deep Learning on Relational Databases <u>https://arxiv.org/abs/2407.20060</u> <u>https://github.com/snap-stanford/relbench</u>

ContextGNN: Beyond Two-Tower Recommendation Systems <u>https://arxiv.org/abs/2411.19513</u> <u>https://github.com/kumo-ai/ContextGNN</u>

PyTorch Frame Community & Summary

Support for multi-modal features
 Support for LLMs and foundation models
 Support for Relational Deep Learning

()/pyg-team/pytorch-frame ()/pyg-team/pytorch_geometric

•••

pip install torch-geometric
pip install pytorch-frame

akihiro@kumo.ai

What's coming?

- Add more layers
- Add more models
- Integrate NestedTensor?
- Integrate fbgemm kernels?

Next steps:

- Run examples
- Use your own data
- Build your own models
- Check out RelBench
- Check out ContextGNN
- Contribute!
- Join PyG Slack!

https://join.slack.com/t/torchg eometricco/shared_invite/zt-2pp irgs10-_krkJVMgCeXiP92jDCRbig **Community Contributors** anas-rz berkekisin Borda crunai DamianSzwichtenberg drivanov eliazonta February24-Lee HoustonJ2013 itsjayway ivansir kaidic NeelKondapalli puririshi98 rishabh-ranjan SimonPop toenshoff

Core Contributors akihironitta rusty1s vid-koci weihua916 wsad1 XinweiHe yiweny zechengz