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● Integrating GBDT with deep learning models is non-trivial
○ training tabular models with image and text encoders
○ training recommendation models with GNNs end-to-end

Tree-based models are dominant – with limitations

● GBDTs are focused on numerical and categorical features
○ Modern tabular data have text and images
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PyTorch Frame



      PyTorch Frame

✅ Multi-modal features
numerical, categorical, multi-categorical,
image, text, embedding, timestamp

✅ Integration with foundation models & GNNs

✅ Modular design covering various existing models
e.g., Trompt, ExcelFormer, FT-Transformer

pyg-team/pytorch-frame

A modular framework for tabular learning

🎉 Best Paper Award at TRL@NeurIPS 2024 



Data Materialization
During data materialization,      PyTorch Frame:
● encodes a raw data frame into a

TensorFrame
● computes statistics, e.g., mean, standard 

deviation, count of category elements

● stores columns of the same type in a tensor
● stores sparse features efficiently, e.g., via 

MultiNestedTensor

TensorFrame is a tensor-based data structure

Data Materialization
Data Materialization



Data Materialization and Semantic Types
     PyTorch Frame materializes columns of different semantic types as follows:

● numerical – Pass through of floating-point columns
● categorical – Map categories to indices
● multicategorical – Map multiple categories into indices of varying length
● timestamp – Map timestamps to integers of year, month, day, hour, minute, …
● embedding – Pass through of pre-computed embeddings
● text_tokenized – Tokenize text into a list of integers of varying length
● text_embedded – Pre-compute text vectors via external text models
● image_embedded – Pre-compute image vectors via external image models

Native Integration with Foundation Models
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● Tokenize text during materialization once
● Finetune embeddings in encoder

● Pre-encode text during materialization once
to avoid computing the same embeddings

Data Materialization and Text Columns

    PyTorch Frame provides two ways to handle text columns:
Materialization

Encoder

“text_embedded”

“text_tokenized”
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PyTorch Frame stores variable-length features efficiently via 
torch_frame.data.MultiNestedTensor

Size of dense representation:
N*max_entries*sizeof(dtype)

Size of sparse representation:
N*max_entries*sizeof(dtype)*density
+(N+1)*sizeof(int64)

Example:
● dtype is int64, N is 1,000, max_entries is 1,000, 

density is 10%
● dense: 8,000,000 bytes
● sparse: 8,08,008 bytes (only 10% of dense version!)

Sparse Features in col 1 col 2

offset

values

https://pytorch-frame.readthedocs.io/en/latest/generated/
torch_frame.data.MultiNestedTensor.html

https://pytorch-frame.readthedocs.io/en/latest/generated/torch_frame.data.MultiNestedTensor.html
https://pytorch-frame.readthedocs.io/en/latest/generated/torch_frame.data.MultiNestedTensor.html


Three-stage Model Architecture
Encoding embeds each column independently

● missing data imputation
● normalization
● embedding lookup
● cyclic encoding
● positional encoding
● …

Column-wise interaction performs message
passing across columns.

Decoding summarizes column embeddings to
obtain row embeddings.

● weighted sum of column embeddings
● MLP over the flattened column embeddings
● …

Encoding

Column-wise
interactions

Decoding



Three-stage Model Architecture
Many models fit within three-stage framework

Model Trompt ExcelFormer FT-
Transformer

Encoder Any CatBoostEncoder Any

Column-wise
interaction Trompt Cell Transformer CLS token +

Transformer

Decoder Trompt
Downstream  MLP MLP

Encoding

Column-wise
interactions

Decoding
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Compatible with torch.compile & DDP!

$ python examples/trompt.py --dataset Higgs --batch_size 512
$ python examples/trompt.py --dataset Higgs --batch_size 512 --compile
$ python examples/trompt_multi_gpu.py --dataset Higgs --batch_size 512
$ python examples/trompt_multi_gpu.py --dataset Higgs --batch_size 512 --compile



Single Table to Multiple Tables
– Relational Deep Learning



Relational Data in Real World

FinanceECommerce Social Media



A node denotes a row in a table
● A user in USERS table
● A product in Sales table

An edge denotes a pkey-fkey relationship between nodes
● Users.ID ↔Sales.User_ID
● Products.Product_ID ↔Sales.Product_ID

Nodes features are column features:
● User features: age, post code, signup date
● Product features: price, category tags, image, rating

Relational Data Is a Graph



Graph ML Tasks on Relational Data

https://kumo.ai/docs/examples/predictive-query

https://kumo.ai/docs/examples/predictive-query


Graph Neural Networks on Relational Data

GNNs aggregate information from tables to make predictions

Churn

✅ No feature engineering
✅ No temporal information leakage

via temporal sampling
✅ More accurate model

via lossless graph representation



Step 1: Sample a subgraph

Step 2: Compute node embeddings for nodes in the subgraph

Step 3: Perform message passing across table with GNNs

Tabular Models and GNNs

Churn

Optimize tabular model and GNNs end-to-end for your task



RelBench: A Benchmark for Deep Learning on Relational Databases
https://arxiv.org/abs/2407.20060

https://github.com/snap-stanford/relbench

ContextGNN: Beyond Two-Tower Recommendation Systems
https://arxiv.org/abs/2411.19513

https://github.com/kumo-ai/ContextGNN

Churn

https://arxiv.org/abs/2407.20060
https://github.com/snap-stanford/relbench
https://arxiv.org/abs/2411.19513
https://github.com/kumo-ai/ContextGNN


✓ Support for multi-modal features
✓ Support for LLMs and foundation models
✓ Support for Relational Deep Learning

https://join.slack.com/t/torchg
eometricco/shared_invite/zt-2pp
irgs10-_krkJVMgCeXiP92jDCRbig
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What’s coming?
● Add more layers
● Add more models
● Integrate NestedTensor?
● Integrate fbgemm kernels?

Next steps:
● Run examples
● Use your own data
● Build your own models
● Check out RelBench
● Check out ContextGNN
● Contribute!
● Join PyG Slack!

akihiro@kumo.ai

https://join.slack.com/t/torchgeometricco/shared_invite/zt-2ppirgs10-_krkJVMgCeXiP92jDCRbig
https://join.slack.com/t/torchgeometricco/shared_invite/zt-2ppirgs10-_krkJVMgCeXiP92jDCRbig
https://join.slack.com/t/torchgeometricco/shared_invite/zt-2ppirgs10-_krkJVMgCeXiP92jDCRbig

